

Parametric Study of Mechanical Behavior of Superconducting Solenoids

Giacomo Ragni

August 17, 2011

- Introduction
- 2 Analytical model
- Parametric studies
- Multiple skin configuration
- 5 Future developments

Introduction

Superconducting Solenoids in high magnetic fields are heavily loaded.

It is important to calculate the mechanical behavior which depends on a number of parameters.

Superconducting Solenoids in high magnetic fields are heavily loaded.

It is important to calculate the mechanical behavior which depends on a number of parameters.

A fully analytical model is being realized to perform parametric studies on different configurations of solenoids.

Accomplished tasks

Accomplished tasks

[E. Terzini and E. Barzi, "Analytical Study of Stress State in HTS Solenoids", FERMILAB-TM-2448-TD]

Understand and run Ansys mesomechanical model [A. Bartalesi, "Design of High Field Solenoids made of High Temperature Superconductors", FERMILAB-MASTERS-2009-04]

[E. Terzini and E. Barzi, "Analytical Study of Stress State in HTS Solenoids", FERMILAB-TM-2448-TD]

Understand and run Ansys mesomechanical model [A. Bartalesi, "Design of High Field Solenoids made of High Temperature Superconductors", FERMILAB-MASTERS-2009-04]

Improve the accuracy of the analytical model for parametric studies

Accomplished tasks

[E. Terzini and E. Barzi, "Analytical Study of Stress State in HTS Solenoids", FERMILAB-TM-2448-TD]

Understand and run Ansys mesomechanical model [A. Bartalesi, "Design of High Field Solenoids made of High Temperature Superconductors", FERMILAB-MASTERS-2009-04]

Improve the accuracy of the analytical model for parametric studies

Add insert coil configuration to the original self-field analytical model

[E. Terzini and E. Barzi, "Analytical Study of Stress State in HTS Solenoids", FERMILAB-TM-2448-TD]

Understand and run Ansys mesomechanical model [A. Bartalesi, "Design of High Field Solenoids made of High Temperature Superconductors", FERMILAB-MASTERS-2009-04]

Improve the accuracy of the analytical model for parametric studies

Add insert coil configuration to the original self-field analytical model

Sensitivity analysis of all parameters (E, ν, μ_0)

[E. Terzini and E. Barzi, "Analytical Study of Stress State in HTS Solenoids", FERMILAB-TM-2448-TD]

Understand and run Ansys mesomechanical model [A. Bartalesi, "Design of High Field Solenoids made of High Temperature Superconductors", FERMILAB-MASTERS-2009-04]

Improve the accuracy of the analytical model for parametric studies

Add insert coil configuration to the original self-field analytical model

Sensitivity analysis of all parameters (E, ν, μ_0)

Study of reinforced coils with multiple skins

- Introduction
- 2 Analytical model
- Parametric studies
- 4 Multiple skin configuration
- 5 Future developments

Analytical model

Lamé's equation

$$\frac{E}{1 - \nu^2} \left(\frac{d^2 u}{dr^2} - \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} \right) + f = 0$$

Boundary conditions

$$\sigma_{rr,c}(R_1) = 0$$

$$\sigma_{rr,s}(R_2 + t) = 0$$

$$\sigma_{rr,c}(R_2) - \sigma_{rr,s}(R_2) = 0$$

$$u_{c_2}(R_2) - u_{s_2}(R_2) = 0$$

Magnetic model

Self-field

$$B_0(\alpha, \beta) = R_1 \mu_0 J \beta ln \left(\frac{\sqrt{\alpha^2 + \beta^2 + \alpha}}{\sqrt{1 + \beta^2 + 1}} \right)$$

where
$$\alpha = \frac{R_2}{R_1}$$
 and $\beta = \frac{L_c}{2} \frac{1}{R_1}$

$$B_0(r) = \begin{cases} B_0 & \text{if } r < R_1 \\ B_0 \left(1 - \frac{r - R_1}{R_2 - R_1}\right) & \text{if } r \ge R_1 \end{cases}$$

$$f = \frac{1 - \nu^2}{E} J(B_0) \frac{B_0}{R_2 - R_1} \left(\frac{R_2 r^2}{3} - \frac{r^3}{8} \right)$$

Magnetic model

Insert coil

Superposition of self-field and outer field

$$B_{out}(r) = cost.$$

$$f = \frac{1 - \nu^2}{E} J(B_{tot}) \left[\frac{B_0}{R_2 - R_1} \left(\frac{R_2 r^2}{3} - \frac{r^3}{8} \right) + B_{out} \frac{r^2}{3} \right]$$

Effect of anisotropy

Material	E (<i>GPa</i>)	area (<i>mm</i> ²)
YBCO	110	0.4
Kapton	5.5	0.1125
Ероху	4.5	0.05

An averaged Young modulus

depending on the ratio among the areas was introduced.

$$E_{av} = 79.7 \, GPa$$

Temperature ~ **Interference**

Thermal deformations

$$\left(\begin{array}{c} \sigma_{\textit{rr}} \\ \sigma_{\theta\theta} \end{array} \right) = \frac{\textit{E}}{1 - \nu^2} \left(\begin{array}{cc} 1 & \nu \\ \nu & 1 \end{array} \right) \left(\begin{array}{c} \epsilon_{\textit{rr}} - \alpha \Delta \textit{T} \\ \epsilon_{\theta\theta} - \alpha \Delta \textit{T} \end{array} \right)$$

Assembly interference

Configuration analyzed

Geometry

 $R_1 = 9.5 mm$

 $R_2 = 31 mm$

 $L_c = 126mm$

t = 4mm

Magnetic properties

$$B = 13.4 T$$

$$J(B) = 522.7 \frac{A}{mm^2}$$

Engineering Current Density

Configuration analyzed

Geometry

$$R_1 = 9.5 mm$$

$$R_2 = 31 mm$$

$$L_c = 126mm$$

$$t = 4mm$$

Magnetic properties

$$B = 13.4 T$$

$$J(B) = 522.7 \frac{A}{mm^2}$$

Engineering Current Density

All the stress distributions are in the mid-plane

Results - Self-field

Hoop stresses

Results - Self-field

Hoop stresses

$$e_{max} = 12\%$$

Results - Insert coil

10 T background field

Hoop stresses

Results - Insert coil

10 T background field

Hoop stresses

$$e_{max} = 23\%$$

- Introduction
- 2 Analytical model
- Parametric studies
- 4 Multiple skin configuration
- 5 Future developments

Max stresses (self-field)

Max stresses (self-field)

At high fields the coil is the most critical

Max stresses (insert-coil)

Hoop at R_1 (COIL)

Hoop at R_2 (SKIN)

Max stresses (insert-coil)

Hoop at R_1 (COIL)

Hoop at R_2 (SKIN)

Smaller solenoids have smaller stresses

- Introduction
- 2 Analytical model
- Parametric studies
- 4 Multiple skin configuration
- 5 Future developments

Double skin configuration

Boundary conditions

$$\sigma_{rr,c_1}(R_1) = 0$$

$$\sigma_{rr,s_2}(R_2 + t_2) = 0$$

$$\sigma_{rr,c_1}(R_m) - \sigma_{rr,s_1}(R_m) = 0$$

$$\sigma_{rr,s_1}(R_m + t_1) - \sigma_{rr,c_2}(R_m + t_1) = 0$$

$$\sigma_{rr,c_2}(R_2) - \sigma_{rr,s_2}(R_2) = 0$$

$$u_{c_1}(R_m) - u_{s_1}(R_m) = 0$$

$$u_{s_1}(R_m + t_1) - u_{c_2}(R_m + t_1) = 0$$

$$u_{c_2}(R_2) - u_{s_2}(R_2) = 0$$

Effect of steel thickness

Hoop stress

Effect of steel thickness

Hoop stress

Radial stress

Max stresses can be reduced

- Introduction
- 2 Analytical model
- Parametric studies
- 4 Multiple skin configuration
- Future developments

Improve the accuracy of axial stresses

Improve the accuracy of axial stresses

Optimize geometrical parameters

Improve the accuracy of axial stresses

Optimize geometrical parameters

Deepen multiple coil configurations [Hahn (MIT)2011]

Improve the accuracy of axial stresses

Optimize geometrical parameters

Deepen multiple coil configurations [Hahn (MIT)2011]

Realize technical applications of the analytical model

Axial stresses

Ansys model

Glued connection imposed

Over estimation of the stresses

Analytical model

Impose a constant axial deformation at the mid plane

Consider the effect of the radial component of the magnetic field

$$B_{r} = \frac{\mu_{0}I}{2\pi} \frac{1}{\sqrt{(a+r)^{2} + z^{2}}} \left[K(k) + \frac{a^{2} - r^{2} - z^{2}}{(a-r)^{2} + z^{2}} E(k) \right]$$

